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It is shown that Hilbert-space quantum mechanics can be represented on phase 
space in the sense that the density operators can be identified with phase-space 
densities and the observables can be described by functions on phase space. In 
particular, we consider phase-space representations of quantum mechanics which 
are related to certain joint position-momentum observables. 

1. INTRODUCTION 

The problem of reformulating conventional Hilbert-space quantum 
mechanics in terms of  the classical phase space has been investigated by 
many authors. Wigner (1932), Moyal (1949), and others (e.g., Pool, 1966; 
Hudson, 1974; O'Connell, 1983) considered a representation of  the density 
operators by density functions on phase space which, however, in general 
are not nonnegative. Ali and Prugove~ki (1977a) proved the existence of  
injective affine maps from the set of all density operators in Hilbert space 
into the set of  all probability measures on phase space [cf. also Srinivas 
and Wolf  (1975)]. Ali and Prugove~ki called such mappings phase-space 
representations o f  quantum mechanics. Furthermore, they showed that the 
phase-space representations are in bijective correspondence with the so- 
called informationally complete observables and investigated their trans- 
formation properties under the Galilei group. Some important aspects of 
phase-space representations of  Hilbert-space quantum mechanics were 
reviewed and generalized by Guz (1984). 

In this paper, we understand phase-space representations in the sense 
of Ali, Prugove~ki, and Guz. In particular, we investigate the description of 
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quantum observables by functions on phase space and not only the descrip- 
tion of quantum states by probability measures. 

Our main result reads as follows. Let a phase-space representation 1", 
be given which assigns a phase-space density p = TW to each density opera- 
tor W. If one fixes a small e > 0 and arbitrarily (but finitely) many density 
operators W~, W2 . . . . .  IV=, then for every bounded self-adjoint operator A 
there exists a real-valued bounded function f on phase space such that 

tr WiA- f p,(q, p)f(q, p) dq dp < e 

holds (pi = T'Wi, i = 1 . . . . .  n). That is, the quantum mechanical expectation 
values can, in arbitrarily good physical approximation, be calculated as in 
classical statistical mechanics. 

In Section 2, we review some basic concepts of quantum mechanics and 
fix our notation. In Section 3, we introduce phase-space representations, 
discuss their relation to informationally complete observables, and prove 
our main result on the description of observables by functions. The particular 
case of phase-space representations related to informationally complete joint 
position-momentum observables is considered in Section 4. We sometimes 
refer to Singer and Stulpe (1992), where many aspects of phase-space repre- 
sentations are elaborated in greater detail. 

2. BASIC CONCEPTS 

Conventional Hilbert-space quantum mechanics is based on a complex 
separable Hilbert space ~ .  We denote the space of all bounded self-adjoint 
operators in ~ by ~=(~(~), and the space of all self-adjoint trace-class opera- 
tors by J~A~). As is well known, ~=(~(~) can be considered as the 
dual space (9-~A~))' where the duality is given by the trace functional. Let 
K ( ~ )  c 9";(~v~) be the convex set of all positive trace-class operators Wwith 
tr W = 1, i.e., the set of all density operators, and let L ( ~ ) c ~ = ( ~ )  be the 
convex set of all bounded self-adjoint operators A fulfilling 0_< A _< 1. The 
density operators describe the statistical ensembles of a sort of microsystem 
which we briefly call states. The elements of L ( ~ )  describe the effects, 
i.e., the classes of statistically equivalent realistic measurements with the 
outcomes 0 and 1. For W s K ( ~ )  and A ~ L ( ~ ) ,  the number tr WAE[O, 1] 
is interpreted to be the probability for the outcome 1 of the effect A in the 
state IV. 

The real Banach space ~'=(Jt +) can be equipped with the weak topology 
cr(~=(~),  9j(~f~)) which is the coarsest topology such that all linear 
functionals given by the elements of 9-~=(~) are continuous. We call this 
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topology briefly the tr-topology. Since 

a ( ~ s ( ~ ) ,  ~j~(~g))= ~r(&s(~), K(9(()) 

holds, a neighborhood base of A E~s(~,'eg) is given by the sets 

u(a; HI, .... , w.; c) 

:={.~E~,(Jg)lltr Wi.~-tr  W i A l < g f o r i = l  . . . . .  n} (1) 

where g > 0 and W,-eK(~eg). An effect A e L ( ~ )  is physically approximated 
by AeL(gf() if in many (but finitely many) states Wj . . . .  , W, e K ( ~ )  the 
probabilities tr W;A differ from tr WiA by an amount less than a small 
e > 0. This statement can be tested experimentally and can be characterized 
mathematically by Ae U(A; W~ . . . .  , W,; ~). Hence, the o--topology, resp. 
its restriction to L(~r describes the physical approximation of effects 
(Ludwig, 1983, 1985; Werner, 1983; Haag and Kastler, 1964). 

An observable F on some measurable space (M, E) is an effect-valued 
measure on E, i.e., a map F : E ~ L ( ~ )  satisfying F ( ~ ) = 0 ,  F ( M ) = I ,  

c o  

and F(Ui= iB;)= ~ =  j F(B~), where the sets B;eg are mutually disjoint and 
the sum converges in the a-topology, for instance. Thus, observables are 
positive-operator-valued measures (POV-measures), whereas the more com- 
mon projection-valued measures (PV-measures) are special cases. A state 
WeK(J/g) and an observable F define a probability measure P~v on (M, E ) 
by 

p F ( B )  := tr WF(B) (2) 

We call p F  the probability distribution o f F  in the state W. if F is an observ- 
able with real measuring values, i.e., if (M, E) = (R, E(R)) holds, where E(R) 
denotes the o--algebra of Borel sets of I~, then the expectation value of  F in 
the state W is defined by 

(F)w:= f ~ef~(d~)= f id~dPf~ 

provided that the integral exists. If idn is pF-integrable even for all W~K, 
then it can be shown (Singer and Stulpe, 1992; Stulpe, 1986, 1988) that the 
integral f idR dF=:A ~N~(o~) exists in a a-weak sense. In consequence, we 
obtain 

(F)w=fid~d(tr WF(.))=tr(Wfid~dF) 

resp. 

( F ) w  = tr WA (3) 
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Hence, for any WEK(A,~)and any A ~ s ( g r g ) ,  one can interpret the real 
number tr WA as the expectation value of  some observable. According to 
(1) and (3), the a- topology then describes the physical approximation of  
observables. 

Adopting a terminology introduced by Ali and PrugoveEki (1977a,b; 
Prugove~ki, 1977), we call a family { F ~ } ~  of observables on (Ma, Ea) 
informationally complete if every state is determined by the probability distri- 
butions (2) of  all F~, i.e., if for any two states W~, W2~K(~), 

e ~ -  ~o -Pw2 for all aEI 

implies Wj = W2. It is remarkable that especially one observable can be 
informationally complete. Physically interesting examples for such observ- 
ables are given in Ali and Prugove6ki (1977a,b); we shall consider these 
examples in Section 4. Some mathematical aspects of  informationally com- 
pleteness are discussed in Singer and Stulpe (1992). In particular, it is shown 
that the existence of  single informationally complete observables can be 
concluded from the norm-separability of  ovf, resp., ~-'s(~,~). Moreover, infor- 
mationally complete POV-measures cannot be PV-measures. 

3. PHASE-SPACE REPRESENTATIONS 

Let a set f 2 - ~  and a o--algebra E in D be given, i.e., a nontrivial 
measurable space (f~, E). We call (fL E) phase space. Denote the space of  
all a-additive real-valued measures on Z by J//R(f~, E) and the convex set of  
all probability measures by K(f~, Z). By means of  l[ vii := Ivl(f~), where Ivl is 
the total variation of v ~ J/~(f~, E), d//~(~, E ) becomes a real Banach space. 
Now let/~ r 0 be a fixed o--finite (not necessarily finite) positive measure on 
E, i.e., (~,  E, ;t) is a nontrivial o--finite measure space. In the standard case, 
;t is the Lebesgue measure defined on the a-algebra of  Borel sets of  the usual 
phase space. The real Banach space Aa~(f~, E, ;t) can be considered as a 
closed subspace of  ~/g~(f~, E). Furthermore, 

(~e'~(~, z, z ) ) '=  Le~(f~, z, ;t) 

holds. By K(f~, E, ;t) we denote the convex set of  all phase-space densities, 
i.e., the set of all probability densities p~L,e~(f2, E, ;t) defined by p(co)>0 
for ;t-almost all co ~ and ~ p d;t = 1. 

A phase-space representation of quantum mechanics is an affine map 
that assigns to every state W~K(~) injectively a phase-space density 
psK(f~, E, ;t) or, more generally, a probability measure p sK(~ ,  Z). It is 
easy to show that the injective affine maps T: K(Jg)  ~ K(f~, E) correspond 
bijectively with the injective positive linear maps T: ~-]~(iF) ~ J//R(fl, E ) hav- 
ing the property TK(Jg) ~_ K(fL E). 
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Definition 3.1. We call a linear map T : ~ - ] ~ ( ~ ) ~ ' R ( ~ ,  Z) a phase- 
space representation of quantum mechanics on (f~, Y~) if (i) TK( g,~g ) c_ K(~, Z ), 
(ii) T is injective. If (f~, Z, 2) is a o--finite measure space, then an injective 
linear map 1": Y-s(af( ) ~ ~ ( f ~ ,  Z, X) with TK(~Cf) ___ K(f2, Y~, X) is called a 
phase-space representation of quantum mechanics on (fl, Z, )0. 

Condition (i) implies that T is a positive bounded linear map with 
II TII = 1. The same holds for T. It is a remarkable fact that injective affine 
maps from K ( ~ )  into K(f~, Y~) do exist. In fact, every informationaUy com- 
plete observable gives rise to a phase-space representation. 

Proposition 3.2. Every informationally complete observable F on 
(M, E) := (f~, Z)  defines a phase-space representation T on (~, E) by 

(TV)(A) := tr VF(A) (4) 

where V e ~ ( ~ )  and AcE.  In particular, for WcK(Jg) we have 

TW= tr WF(. ) = P~v 

Proof Obviously, TVc~rR(f~, E), TW=P~vcK(D, Z), and the map T 
is linear. Since F is informationally complete, T is injective on K(~, '~). Let 
111 and 112 be positive trace-class operators and assume 

TV~ = TV2 (5) 

Then it follows from (4) by setting A =f~ that tr 111 = t r  V2=:a. For a =0,  
we obtain V~ = 112=0. For a r  divide (5) by a and observe that (1/a)V~ 
and (1/a)V2 are density operators. Consequently, 1fl = II2 holds. Finally, 
assume (5) for arbitrary 1/"1, V2c~-:,(~Cg). Decomposing 111 and V2 into posi- 
tive operators, we obtain 

7"( Vi ~ - VF) = 7~( V~ - V~) 

resp. 

T( V~ + V~-) = T( V + + V~-) 

and conclude V~-+ V~-= V~ + V~-, resp. V~ = V2. Hence, T is injective. �9 

Conversely, one can prove (Singer and Stulpe, 1992) that every phase- 
space representation T on (f~, Z) determines uniquely an informationally 
complete observable F such that TV= tr VF(. ) is satisfied. 

Let t be the canonical embedding of  &~(~ ,  Z,/~) into Jt/R(f~, Z), i.e., 
I (tp)(A):=~A p dX, where pcL~R(f~,E, X) and AcE.  The map t and its 

1 I inverse t -  defined on rL~R(~, Z, 2) are linear, isometric, and positive. Every 
phase-space representation T on (fl, Z, 2) defines a phase-space representa- 
tion T on (~q, Z) by T:= fT. Conversely, if T is a phase-space representation 
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on (~, E) such that all measures TV are absolutely continuous with respect 
to A., then a map 1"can be defined by I":= r-iT. In the next section, we shall 
discuss a class of physically interesting examples for phase-space representa- 
tions of the form T= �9 T. 

We remark that an injective affine map T: K(Jt ~) ~ K(~, E) and in this 
sense a phase-space representation T on (f~, Y.) cannot be bijective (Singer 
and Stulpe, 1992). The same statement holds for injective affine maps from 
K(~t ~ into K(f~, E, A,) and phase-space representations on (f~, E, ~.). 

By means of a phase-space representation of quantum mechanics, the 
states W e K ( ~ )  can be identified with probability measures. Our main result 
concerns the corresponding description of the observables A ~ s ( ~ )  and is 
formulated as the subsequent theorem. To prove it, we need the following 
lemma. 

Lemma 3.3. Let ~ and ~ be Banach spaces with duals ~ I  and V~, 
T: ~ ~ ~2 a bounded linear map, and T': ~ ~ ~ I  the adjoint map. If T is 
injective, then the range R(T'):= T'~e~ is a subspace being (r(Y/~], Y//~)-dense 
in ~ ] .  

Proof Assume 

R(T') ~(~i.~-,) 4 ~V'~ 

Then, according to a consequence of the Hahn-Banach theorem, there exists 
a cr(Cl, ~ll)-continuous linear functional A 40  on ~ such that 

A(I) =0 for all I~R(T') '~(~iy') 

Since the cr(~],  C)-continuous linear functionals on CI  are just the ones 
that are represented by the elements of C ,  we have 

A(1)=I(v)=O 

for all I~R(T'), where veY/~, 040 ,  corresponds to A. From this it follows 
that 

(7"?)(0) = ?(to) = 0 

for all ?~ ~ and some v 40. Consequently, we obtain Tv= 0 for some v ~0. 
This is a contradiction because T is presupposed to be injective. Hence, 
R(T') is cr(~l ,  ~)-dense in ~q .  �9 

Since the dual space of ~ R ( ~ ,  E) is a very abstract object, we formulate 
the following theorem only for phase-space representations on (f~, E, ;t). In 
Singer and Stulpe (1992) a corresponding theorem for phase-space represen- 
tations on (~, E) is presented where the space (~'a(f~, E))' is replaced by 
the subspace ffn(f~, E) of all real-valued, bounded, E-measurable functions 
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on ft. [Remember that, in contrast to ~R(f~,E), the elements of 
.L~'~~ E, A) are classes of X-essentially hounded functions.] 

Theorem 3.4. Let a or-finite measure space (~, E, A) and a phase-space 
representation T:~-j~(~,~f')--.~q'~(fl, E,A) be given. Then, for every 
A ~ ~s(~f ' ), every e > 0, and any finitely many states 
IV,, WE . . . .  , W,,eK(~f), there exists a function f a ~ ( f L  E, A) such that 

I tr WiA-fpi fdAl<e 

holds, where pi:= TWi (i= 1 , . . . ,  n). 

Proof. According to the preceding lemma, R(T') ^' o~ = T ~ a  (~, E, A) is 
o--dense in ~s(~f). This implies that, for any A ~ , ( g ) ,  every neighborhood 
U(A ; W 1 , . . . ,  Wn; e) of the form (1) contains an element T'feR(T'). Thus, 
we obtain 

Itr W,.A-tr W~(7"f)l < s 

for every e > 0  and any W~,... ,  WnEK(.g~). Now, the assertion follows 
from 

tr W,(i"f)= f ( Wi)f dZ= f :,f dZ . 

Given a phase-space representation of quantum mechanics on (f~, Y~, A), 
the states WeK(.Cf) can be characterized by phase-space densities. The 
theorem states that, moreover, the observables A ~ , ( ~ )  can, in arbitrarily 
good physical approximation, be described by functions on phase space 
such that the quantum mechanical expectation values can be calculated as 
integrals. This situation is fairly close to classical statistical mechanics. In 
particular, one can work with the same small e > 0 and the same many states 
W , , . . . ,  W~ for all observables. 

An operator AeL(.Cf) can be interpreted as an effect. According to 
the theorem, the effects AeL(~Cf) can be represented by functions 
feL,r E, A) such that the probabilities tr WM coincide approximately 
with ~p~fdA. However, it does not follow that feL(~, Y,, A) holds, i.e., a 
function f representing an effect need not satisfy 0 < f <  1 A-a.e. 

4. JOINT POSITION-MOMENTUM OBSERVABLES 

We now discuss phase-space representations of quantum mechanics that 
are related to informationally complete joint position-momentum observ- 
ables. For simplicity, we consider spinless particles moving in one spatial 
dimension. 



1792 Stulpe 

We are working with the Hilbert space o v t ~  E(R), A.), where 
E(I~) is the o--algebra of  Borel sets of I~ and ~ the Lebesgue measure. Let 
ue~f '  be a bounded function of  norm 1 and define 

Uqp(X) := eipXu(x- q) 

for q, peR.  It is well known that the family {Uqp}(q,p)~R2 is a continuous 
resolution of  the identity in ~r i.e., 

2re [Uqp) (Uqp[ dq dp 

holds where the integral exists in the weak sense [for a rigorous proof, 
see Davies (1976)]. In consequence, a POV-measure F on the phase space 
(f~, Z):= (R 2, E(N2)) is defined by 

F(A):=~fAluqp)(Uqpldqdp (6) 

where A eE(R  2) is a Borel set. As we shall see, the two-dimensional Lebesgue 
measure A2, dq dp:=2,2(d(q,p)), corresponds to the general measure A of 
the previous section. We call F a joint position-momentum observable. The 
marginal observables are given by 

R ) = ~ Z s .  [u[ 2 F~ F(Bx dE a 
d 

Fe(B) :=F(N x B) = f z s  * lal 2 dE e 

(7) 

where BeE(II~), Z~ is the characteristic function of  B, E e and E e are the 
spectral measures of  the position and momentum operator, and ~ denotes 
the Fourier transform of u (Davies, 1976). That is, F Q is an approximate 
position observable and F ~" an approximate momentum observable (Stulpe et 
al., 1988). The integrals in (7) are understood in the weak or o--weak sense. 
Finally, the definition (6) for joint posit ion-momentum observables as well 
as the following considerations can be slightly generalized. Namely, one can 
replace the function u by some density operator in ocg and the configuration 
space • by I~ N. 

Ali and Prugove~ki (1977b) proved that the observable given by (6) is 
informationally complete if and only if the Weyl transform 

(q, p) ~-~ tr P.Uqp = (uluqp) 

(Pu:=[u)(u[, Uqp:=eiPQe -iqp) is different from zero for 22-almost all 
(q, p ) e  I~ 2. In particular, there exist informationally complete joint position- 
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momentum obervables F. In contrast to the informational completeness of 
F, neither the pair of the PV-measures E Q and E P (e.g., Prugove~ki, 1977; 
Stulpe and Singer, 1990) nor the pair of the marginal observables F e and 
F e (Ali and Prugove~ki, 1977a) is informationally complete. 

Let F be an informationally complete observable according to (6) and 
T the corresponding phase-space representation on (R 2, E(~2)) according to 
Proposition 3.2. For every density operator WeK(,r the assigned 
probability measure TW=P[v has the continuous phase-space density 
(q, p) ~ p(..q, p) := (1/27[)<Uqp[ Wuqp>. This implies that a phase-space repre- 
sentation T on (I~ 2, E(I~2), A 2) is determined by TW:= p. We next calculate 
a representation for the adjoint map T'. For all WeK(~) and all 
f e s  2, E(R2), t.2), we have 

=ffdP[v=ffd(trWF(.))=tr(WffdF) 

where SfdF is understood in the o--weak sense (Singer and Stulpe, 1992; 
Stulpe, 1986, 1988) and does not depend on the representative of the class 
of A2-essentially bounded functions. Hence, we obtain 

If aF 

and in consequence 

T'f=~-~ ff(q,p)luqi,) (Uqpl dq dp (8) 

According to Lemma 3.3, every operator A e&s(A e) can be approximated 
with respect to the o--topology by some T f e M s ( ~ ) .  In particular, the spec- 
tral projections EQ(B) and EJ'(B) can be approximated physically arbitrarily 
well by operators of the form (8). Roughly speaking, with suitable functions 
f n  Q a n d f ~  for every BeE(R) we have 

EQ( B)~l yf ~(q,p)luqp> <uqpl dq dp 

E ' ( B ) ~  ff~(q,p)luqp)(Uqpl dq @ 
(9) 
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A similar approximation of E~ and EP(B) is given by equations (7): 

FO(B)=-~fZB• 

fZB * lul 2 dEe~EQ(B) 

[ z~  * I~12 dEV,~EV(B) 
d 

(10) 

However, it is intuitively clear by the properties of the Fourier transforma- 
tion that, if one of the approximations (10) is good, the other one is bad. 
In contrast, both approximations (9) may be good. Hence, in a certain sense, 
the observables of position and momentum both can be approximated by 
functions of the joint position-momentum observable F arbitrarily well. 

We conclude these considerations with a precise statement. Fix a small 
e > 0 and many density operators W~ . . . . .  IV,. Then, by Theorem 3.4, for 
every operator A e ~ s ( g )  there exists a function f e  ~o(R2,  E(R2), ~)) such 
that 

tr WM- f p~(q,p)f(q,p) dq dp < t 

holds, where the functions (q, p) ~ Pi(q, p) = (1/21r) (Uqp I Wiuqp) are continu- 
ous phase-space densities. 
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